Clinical Management of Malignant Ascites and Pleural Effusions

Tonya Faundeen, MS, MMS, PA-C
Physician Assistant
Interventional Radiology
Northwestern Memorial Hospital
Chicago, IL

Disclosure

- Consultancy relationship with Cardinal Health
- Paid an honoraria and travel expenses for this program by Mader Communications Group, Inc.

Objectives

- Review pathophysiology of malignant ascites and pleural effusions.
- Discuss various treatment options for malignant ascites and pleural effusions with attention to benefits and limitations.
- Identify appropriate candidates for the PleurX catheter, both for use in the peritoneum and in the pleural space.

Peritoneal Anatomy

- Normally, less than 50ml of peritoneal fluid
- Fluid exchange rate of 500ml/hour
- Low protein
- Lubricates organs

Pathogenesis of Malignant Ascites

Enck, Am J Hosp Palliat Care 2002;19:7-8
Causes of Malignant Ascites

- Over 80% Caused By:
 - Ovarian
 - Pancreatic
 - Colon
 - Uterine
 - Breast
 - Lung
 - Lymphoma
 - Other GI tract
 - Tumor of unknown primary

Malignant Ascites

- Symptoms
 - Pressure/discomfort
 - Early satiety
 - Dyspnea
 - Nausea/vomiting
 - Limited mobility
 - Lower extremity edema

Prognosis

- GI malignancy + ascites
 Median survival = 1-4 months
- Ovarian primary + ascites
 Median survival >300 days

CT/US Images

- Ascites

Treatment Options

- Repeat large volume paracentesis (LVP)
- Peritoneal drainage catheters (pigtail catheters)
- Peritoneovenous shunts
- Subcutaneous ports
- Tunneled catheters (PleurX®)

Large Volume Paracentesis

- Temporary solution
- Multiple needle sticks
- Can develop loculations
- Frequent trips to the hospital
- Resource utilization
- Generally safe
 (avoid epigastric vessels)
Non-Tunneled Drains

Pigtail catheters
- Complication rates up to 35%
- Patient continuously connected to drainage bag
- Reserve for patients with short life expectancy (weeks)

Tunneled Ports

- Subcutaneous
- Several disadvantages:
 - high rates of infection
 - requires nursing support
 - painful access
 - obstruction

Peritoneovenous Shunts

Advantages:
- retention of protein-rich fluid
- no external drainage devices
Disadvantages:
- blockage
- thrombosis
- pulmonary edema
- seroma formation
- leakage
- DIC
- pulmonary tumor embolus

Tunneled Catheter

- PleurX® Catheter
- FDA approved for malignant ascites and pleural effusions
- 15.5 French, 66 cm silicone catheter
- One way valve

PleurX®

- Drainage by patient, family member or caregiver
- Short learning curve
- Spend more time at home -- less at the hospital
- Patient in control
- Not connected to bottle unless draining/not gravity dependent
- Insurance pre-authorization for supplies
- Supplies mailed to patient’s home

Patient Selection for the PleurX® Catheter

- Does patient get symptom relief with paracentesis?
- Loculated ascites?
- Is chemotherapy likely to resolve ascites?
- Life expectancy of patient?
- Family support?
- Hospice bound?
Hospice Set-Up

- $100/day for DRE
- Drainage line and cap
- Portable suction device -- included in daily costs

PleurX® Catheter

- Case History
 - 51 year old woman with ovarian cancer
 - 121 total LVP (4–6 liters per LVP) in 10 months
 - APD drain placed—peritonitis within one week
 - PleurX catheter placed: no further need for LVP or other catheters until death 4 months later

Pleural Physiology

- Normally 5-20 mL fluid
- Fluid passes thru visceral and parietal pleura at a rate of 5 to 10 L/day
- Relatively protein-free
- Reabsorbed by lymphatic drainage

Hausheer & Yarbro, Semin Oncol 1995; 12:74–75

Pleural Effusions

- Transudative
 - Accumulation of proteinaceous material in pleural space
 - Causes: Pneumonia, Malignancy, PE
- Exudative
 - Imbalance between oncotic and hydrostatic pressures
 - Causes: CHF (90%), Cirrhosis, Nephrotic Syndrome

Transudative v.s. Exudative

- Dx Thoracentesis:
 - LDH, Protein, pH, Gram Stain/Cx & Cell Count, +/- cytology
- Light’s Original Criteria- Exudative
 - Protein fluid:serum > 0.5,
 - LDH fluid:serum > 0.6, or
 - Fluid LDH > 2/3 upper limit of serum normal

Malignant Pleural Effusion Pathophysiology

- Multiple causes
- Most important for MPE:
 - Lymphatic drainage blocked by tumor cells
 - Pleural metastases (increased oncotic pressure of pleural fluid)

Causes of Malignant Pleural Effusions:

- Lung 17-56%
- Breast 15-38%
- Lymphoma/Leukemia 6-17%
- Ovarian 7-16%
- Gastric Carcinomas 3-6%

- 2/3 found in women due to breast and gynecologic malignancies

Clinical Aspects

- Dyspnea (>1/2 of patients)
- Pain (usually dull)
- Cough
- Generalized systemic symptoms
 - Malaise, anorexia, fatigue

Pleural Effusion

Characteristics of Fluid

- Malignant Pleural Effusions
 - Often bloody
- Chylothorax suggests mediastinal nodal involvement

Prognosis

- Average survival time 3 to 6 months
- Mortality 54% at 1 month
 - 84% at 6 months
- 9.6 months in patients whose malignant effusion first sign of cancer

Management Options

Control of pleural effusion-things to consider:
- Palliative goals
- Patient condition/prognosis
- Risk/likely benefit
- Longer survival expectancy may warrant more aggressive therapy
- Patient preferences

Treatment Options

- Therapeutic thoracentesis
- Chest tube alone
- Chest tube with chemical pleurodesis or talc slurry
- VATS with talc poudrage
- Tunneled catheter (PleurX®)

Therapeutic Thoracentesis

- Diagnostic
- Does patient get relief?
- Does lung re-expand?
- Drawbacks:
 - loculations
 - multiple needle passes
 - exposure to CXR
 - potential pneumothorax
 - thoracentesis alone has 97% recurrence rate at one month

Chest Tube Drainage Alone

- Pleural fluid drained via large French chest tube
- Requires hospital stay for up to a week
- Painful
- Patient less mobile
- Fluid typically comes back
- Remove tube when drainage less than 30-50cc/day

Chest Tube with Pleurodesis

Goal:
- Approximation of visceral and parietal pleural surfaces
- Introduction of sclerosing agent
 - inflammation (pleuritis)
 - fibrosis

Pleurodesis

- Done via large surgically placed chest tube or 16 Fr tube placed by IR
- Chemical pleurodesis (painful)
 - Bleomycin (60 U in 100ml NS)
 - Doxycycline (500 mg in 100ml NS)
- Talc slurry (fevers)
- Hospital stay

Hausheer & Yarbro, Semin Oncol 1985; 12:54-75
VATS

- Video Assisted Thoracoscopic Surgery
- Advantages:
 - Excellent distribution of agent
 - Mechanical abrasion
 - Can lyse adhesions
 - Obtain biopsy
- Disadvantages:
 - Must have healthy patient
 - Hospitalization
 - GA

Tunneled Catheter

- i.e. PleurX and Aspira
- Palliation of dyspnea
- Auto-pleurodesis
- Placed under moderate sedation
- Easily done as an outpatient
- Patients are able to drain at home

Patient Selection for the PleurX®

- Relief of symptoms with thoracentesis?
- How long since last tap?
- Multiple loculations?
- “Trapped lung”
- VATS or talc pleurodesis in the past?
- Family support?

PleurX® loculation

- One-way valve
- Accessed with a special tip that is attached to the drain-line

Catheter Management

- The patient or caregiver will use these vacuum bottles to drain the pleural effusion.

- The cap is placed on the valve to keep the access point sterile.
Steps to PleurX® Approval

Patient Good Candidate for PleurX?

Fax Insurance form to Cardinal Health. Allow 3-5 business days.

Cardinal Health obtains insurance approval. Communicates cost to referring MD.

Schedule procedure once approved.

Your Practice Needs A Champion!

- Truly successful programs have a point person
- Patient selection
- Insurance pre-approval for supplies
- Trouble shooting
- Communication with referring MDs
- Patient advocate
- MDs are too busy
- Need a mid-level provider or a nurse to be the champion!

Patient Education

- Ideally, have patient view video prior to procedure
- Family needs to be present
- Demonstrate, then have family member practice
- Discharge instructions
- Video to take home

Patient Education

- Clean procedure -- not sterile
- Positive reinforcement
- Contact person for issues -- including after hours/weekends

Discharge Instructions

- Pleural
 - 1 Liter max/day
 - Less than 30-50 cc for 3 consecutive drainages, contact MD
 - Keep dry
 - No soaking in bathtub, hot tub, swimming

- Peritoneal
 - 2 Liters max/day
 - Less than 100cc for 3 consecutive drainages, contact MD

Pearls

- Ascites leak
 - Insert medial and superior
 - Frequent dressing changes to keep dry
 - Drain 2L/day

Drawing courtesy S Rosenberg, PA-C
Pearls

- Occlusion
 - tPA (4-6cc/20cc NS)
 - Wire manipulation
 - Order CT - look for tumor, fenestrations, fluid volume

Safety and Effectiveness of the PleurX® Catheter When Used to Treat Malignant Ascites

Courtney AL, Nemcek Jr. AA, Rosenberg SM, Tutton SM, Gordon GI, Darcy MD

Northwestern Memorial Hospital, Chicago, Illinois
Evanston Northwestern Healthcare, Evanston, Illinois
Washington University Medical Center, St. Louis, Missouri
St. Luke’s Hospital of Kansas City, Kansas City, Kansas

Disclosure

- Study supported by Denver Biomedical, Inc., Golden, Colorado

Materials and Methods

- PleurX pleural fluid and ascites
 - 15.5 Fr, 66 cm fenestrated, silicone catheter with one-way valve and polyester cuff
 - Investigational device had longer non-fenestrated (subcutaneous) portion

Objectives

- Primary:
 - Determine length of time the PleurX® system can function in patients with malignant ascites.

- Secondary:
 - Measure the degree of symptom relief.
 - Assess usability in the home care setting.
 - Measure complication frequency.
Materials and Methods

• Study Design
 • Multicenter, prospective, observational single-arm
 • Inclusion criteria:
 2 or more paracenteses within 30 days
 Malignancy with abdominal involvement
 • Exclusion criteria:
 ESRD on dialysis
 Non-malignant hepatic or nephrotic disease
 Responsive to treatment of the primary malignancy
 Peritoneal infection or loculation
 Peritoneal chemotherapy or immunotherapy
 Intra-abdominal radiation therapy

Timeline of Protocol

Day 2-3: Supervised drainage
Week 1: Phone fu SSQ

Week 2: Clinic, MSAS, SSQ
Week 3-7: Weekly phone fu

Week 8: Clinic, MSAS, SSQ
Week 9-11: Weekly phone fu
Week 12: Clinic, Labs, MSAS, SSQ

Materials and Methods

• Study Group
 • 36 patients initially consented
 • 34 received device
 • Placement in IR
 • Antibiotics in majority
 • Local anesthesia (Lidocaine) and/or moderate sedation
 (Fentanyl and Versed) in all

Results

DEMOGRAPHICS:
Age 64.3 years (40-81)
Gender 13 males (38%), 21 females (62%)
Cytology 11/20 (55%) positive for malignancy
Chemotherapy at enrollment 13 (38%)
Current Ascites treatment Diuretic therapy (n=10)
Salt restriction (n=2)

MALIGNANCY TYPE:
Pancreatic 6 (18%)
Breast 6 (18%)
Colon 5 (15%)
Ovarian 3 (9%)
Carcinoid 3 (9%)
Liver 2 (6%)
Appendix 1 (3%)
GIST 1 (3%)
Mesothelioma 1 (3%)
Other Non-GI 6 (18%)

Results

• Catheter Placement
 • Technical Success: 100%
 • One minor complication (epigastric vein injury)
 • No albumin or colloidal volume expander
 • Imaging
 • US and Fluoro 91%
 • US only in 6%
 • CT and US 3%

• Catheter Function
 • 85% with excellent function at last fu or death
 5 (15%) had resolution of ascites
 3 catheters removed
 • 6 (15%) had loss of function
Results

- Drainage Sessions
 - 440 drainage sessions
 - Median drainage sessions per patient: 17 (5 to 56)
 - Mean volume per session: 1525 cc (410 to 2452 cc)

Results

- Ease of Use
 - No problems: 372 of 440 sessions (85%)
 - 15% of sessions with 1 or more problems
 - “more than minimal pain or discomfort”
 - residual full feeling
 - problems with vacuum bottle
 - difficulty with performance of procedure
 - No patient needed to stop procedure due to procedural difficulties

Results

- Symptoms (MSAS)
 - Ascites related symptoms
 - "feeling bloated"
 - Symptom: feeling bloated
 - 2 wks: p=0.0001
 - 8 wks: p=0.0059
 - 12 wks: NS
 - "abdominal discomfort"
 - Symptom: abdominal discomfort
 - 2 wks: p=0.0001
 - 8 wks: p=0.0100
 - 12 wks: NS

Results

- Symptoms of hypovolemia/hypoalbuminemia NS

Results

- Symptoms (SSQ)
 - 56% described better overall quality of life at 1 week
 - 35% at 2 weeks
 - 44% at 8 weeks
 - 28% at 12 weeks

Results

- Laboratory Values
 - Na+, K+, Total Protein, Albumin, BUN, Cr
 - All patients had albumin values below normal at baseline
 - NS between baseline and 12 weeks

Results

- Adverse Events
 - No adverse events of any kind in 14 (41%)
 - Most frequent adverse event: ascites leakage in 7 (21%)
 - Peritonitis in one patient (3%) (one questionable case)
 - Severe adverse events 3 (9%)
 - Severe pain during drainage
 - Sudden dyspnea and coughing several hours post-placement
 - Anemia severe enough to require transfusion
Patient Survival

- N = 29 deaths
- Mean survival = 41.34 days
- Median survival = 30 days (95% CI 15-48)

Limitations

- SSQ measures overall QOL not ascites specific QOL
- 4 patients entered with only a single paracentesis within 30 days prior to catheter placement (protocol deviation)

Conclusions

- PleurX® catheter for use in malignant ascites:
 - improves ascites-related symptoms
 - permits home use
 - few adverse events or catheter failures
 - lab values stable

Conclusion

- Malignant ascites and effusions are recurrent
- The PleurX® catheter enhances the patient’s quality of life
- PleurX® now an option for Hospice patients
- High patient satisfaction